A novel antisense RNA regulates at transcriptional level the virulence gene icsA of Shigella flexneri
نویسندگان
چکیده
The virulence gene icsA of Shigella flexneri encodes an invasion protein crucial for host colonization by pathogenic bacteria. Within the intergenic region virA-icsA, we have discovered a new gene that encodes a non-translated antisense RNA (named RnaG), transcribed in cis on the complementary strand of icsA. In vitro transcription assays show that RnaG promotes premature termination of transcription of icsA mRNA. Transcriptional inhibition is also observed in vivo by monitoring the expression profile in Shigella by real-time polymerase chain reaction and when RnaG is provided in trans. Chemical and enzymatic probing of the leader region of icsA mRNA either free or bound to RnaG indicate that upon hetero-duplex formation an intrinsic terminator, leading to transcription block, is generated on the nascent icsA mRNA. Mutations in the hairpin structure of the proposed terminator impair the RnaG mediated-regulation of icsA transcription. This study represents the first evidence of transcriptional attenuation mechanism caused by a small RNA in Gram-negative bacteria. We also present data on the secondary structure of the antisense region of RnaG. In addition, alternatively silencing icsA and RnaG promoters, we find that transcription from the strong RnaG promoter reduces the activity of the weak convergent icsA promoter through the transcriptional interference regulation.
منابع مشابه
VirF Relieves the Transcriptional Attenuation of the Virulence Gene icsA of Shigella flexneri Affecting the icsA mRNA–RnaG Complex Formation
VirF is the master activator of virulence genes of Shigella and its expression is required for the invasion of the human intestinal mucosa by pathogenic bacteria. VirF was shown to directly activate the transcription of virB and icsA, which encode two essential proteins involved in the pathogenicity process, by binding their promoter regions. In this study, we demonstrate by band shift, enzymat...
متن کاملCrystal structure of the autochaperone region from the Shigella flexneri autotransporter IcsA.
The IcsA (intracellular spread gene A) autotransporter from Shigella flexneri is a key virulence factor. We identified a stable fragment comprising residues 591 to 758, which corresponds to the autochaperone region of the IcsA passenger domain. We showed that thermal unfolding of the autochaperone region is reversible and determined its crystal structure at 2.0-Å resolution.
متن کاملIcsA is a Shigella flexneri adhesin regulated by the type III secretion system and required for pathogenesis.
Following contact with the epithelium, the enteric intracellular bacterial pathogen Shigella flexneri invades epithelial cells and escapes intracellular phagosomal destruction using its type III secretion system (T3SS). The bacterium replicates within the host cell cytosol and spreads between cells using actin-based motility, which is mediated by the virulence factor IcsA (VirG). Whereas S. fle...
متن کاملEstablishment of unipolar localization of IcsA in Shigella flexneri 2a is not dependent on virulence plasmid determinants.
Unipolar localization of IcsA on the surface of Shigella flexneri is required for efficient formation of actin tails and protrusions in infected eucaryotic cells. Lipopolysaccharide (LPS) mutations have been demonstrated to affect either the establishment or the maintenance of IcsA in a unipolar location, although the mechanism is unknown. In order to analyze the contribution of virulence plasm...
متن کاملIdentification of Shigella flexneri IcsA Residues Affecting Interaction with N-WASP, and Evidence for IcsA-IcsA Co-Operative Interaction
The Shigella flexneri IcsA (VirG) protein is a polarly distributed outer membrane protein that is a fundamental virulence factor which interacts with neural Wiskott-Aldrich syndrome protein (N-WASP). The activated N-WASP then activates the Arp2/3 complex which initiates de novo actin nucleation and polymerisation to form F-actin comet tails and allows bacterial cell-to-cell spreading. In a prev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 38 شماره
صفحات -
تاریخ انتشار 2010